Firewalls en Capa 2 en entornos OT

En muchas ocasiones se habla que la primera medida técnica a implementar en lo que a seguridad en entornos industriales se refiere es definir los perímetros entre los entornos IT y OT. Para ello empleamos NGFW capaces no sólo de filtrar tanto por IPs y servicios sino realizar DPI (Deep Packet Inspection) a nivel de capa 7 además de otras funcionalidades como Antivirus, IDS/IPS, Anti DoS. Ya dentro del entorno OT, la recomendación es definir áreas, o zonas, más pequeñas y filtrar el tráfico entre ellas por medio de un segundo Firewall. El de «Segmentación».

Físico o virtual, en el supuesto de que un error humano o acción malintencionada se produjese en alguna de ellas, evitaríamos la propagación al resto provocando un daño mayor. Además, si el daño es menor, el tiempo que necesitaremos para recuperar el conjunto de equipos afectado será menor, como menor será su número.

En la siguiente imagen podemos ver una configuración en la dicha separación la hacemos por medio de la definición de Firewalls Lógicos dentro de uno físico del fabricante Fortinet.

El tamaño de estas áreas, zonas o celdas según sea la literatura de referencia, podrá albergar un número mayor o menor de equipos. Una de las opciones es definir una VLAN para cada una de ellas con un único dominio de broadcast y direccionamiento. Esto cubriría aspectos como protocolos industriales que operen en Capa 2 o tráfico multicast como LLDP. De esta manera podremos filtrar cualquier comunicación entre subredes, otras áreas, servidores en IDMZ (Industrial DMZ), estaciones de ingeniería, etc. Todo este tráfico pasaría por el Firewall de “Segmentación”.

Esto supone asumir que una acción malintencionada en la misma subred podría tener éxito ya que el control se efectúa cuando llega, al menos, en Capa 3. No en Capa 2. Pero, ¿qué ocurre si por alguna razón tenemos que llevar a cabo un filtrado a nivel de Capa 2 a un nivel más bajo y un número de equipos más reducido? Quizás una de las respuestas sea el cambio, o rediseño, del plan de direccionamiento de la/las área/s OT en cuestión y así escalar hasta el siguiente nivel. Sin embargo, esto no puede ser viable.

Mejor pongamos un ejemplo gráfico:

Como podemos observar en esta celda disponemos de un convertidor de fibra a cobre hacia un switch (Switch 1) donde se localizan un HMI y del que cuelga otro (Switch 2) al que se encuentran conectados otros controladores, componentes “Safety”, control de movimiento, etc. Si por alguna razón dicho HMI sufriera alguna infección o se quisiera llevar acabo alguna acción malintencionada, podría alcanzar el resto de equipamiento conectado. Vemos que todo se ubica en un mismo dominio de broadcast y con direccionamiento bajo 192.168.0.0/24.

El problema que se plantea es que el HMI sea un equipo con un sistema operativo sin actualizaciones o fuera de soporte. Bien porque la actualización de éstos pueda ser difícil, aunque no imposible, y por otro lado dado, el ciclo de vida elevado, genera más probabilidad de falta de actualizaciones, nuevos desarrollos, pero siguiendo 100% funcionales. Esto puede suponer un riesgo importante a los equipos ubicados en el otro switch de donde cuelgan autómatas, controladores y otros sistemas.

Sin embargo, no podemos olvidar que las intervenciones en entornos OT no sólo deben ser lo menos intrusivas posible sino, que no alteren la operación normal de las instalaciones. El despliegue de soluciones debe ser transparente y con un nivel de riesgo lo más cercano a cero. Como ya sabemos el riesgo igual a cero, no existe.

Cada cambio introduce un riesgo. Por mucho que lo preparemos, planifiquemos, involucremos a todas las personas que puedan responder ante alguna acción no prevista, siempre puede suceder algo que no esté contemplado. La falta de respuesta en tiempo y forma puede desembocar en la pérdida de disponibilidad. Por ello, cuanto menor sea la cantidad de acciones a realizar mejor. Hemos de guardar un equilibrio entre simplicidad y eficiencia.

Es por todo lo anterior que hemos de considerar el uso y funcionalidades a nivel de capa 2 que ofrecen los cortafuegos. Esto es, filtrar el tráfico entre dispositivos que se encuentren en la misma red y tratar de proteger de forma individualizada todos los elementos desplegados en ella sin requerir cambios adicionales. Esto nos permitirá mantener el direccionamiento intacto siendo la única pérdida de servicio, a priori, los segundos que empleemos en conectar el equipo en nuestra red. Obviamente esto introducirá un punto más de fallo, algo que deberemos asumir si lo que queremos es que otro elemento nos proporcione la seguridad que pretendemos.

Por tanto, cuanto más reduzcamos el riesgo sin intervenir en los equipos finales, indudablemente mejor. Claro está esto también dependerá de la criticidad del equipo, su funcionalidad, ciclo de vida, soporte, entre otros factores. Sin embargo, esto no debe ser algo que deba ser así siempre. Para alcanzar unos niveles lo más completos e integrales posibles hemos de aplicar aquellas que estén disponibles en PLCs, switches industriales, entre otros. Aquí os dejo aquellas que podremos encontrar en autómatas modelo S7-1200 del fabricante Siemens.

En el día de hoy he querido destacar la necesidad de uso de modos y funcionalidades a nivel de capa 2 para proteger los entornos industriales, evitando así cambios o interfiriendo en la operativa aunque esto sea tan sencillo como cambiar una dirección IP.

En sucesivas entradas abordaremos este tema y la manera de cubrir estas necesidades. Esto es uso de firewalls a nivel de capa 2, en lugar de 3, como es a lo que estamos más acostumbrados.

¡Nos vemos en la siguiente!

Presentación Check Point 1200R Rugged Appliance

Una de las características que presentan los entornos industriales, o aquellos donde estén presentes los sistemas de control y automatización, es lo hostil que puede ser el medio en cuanto polvo, humedad, temperatura, se refiere. Con la necesidad de tomar medidas en materia de ciberseguridad, los equipos deben de poseen una serie de características, aparte de las funcionales, que cumplan con estos requisitos de robustez, tolerancia a fallos, entre otras. Conscientes de esta situación, los fabricantes de soluciones de seguridad perimetral y redes han sacado al mercado productos para cubrir esta necesidad con más o menos gama dependiendo del fabricante. Hoy hablaremos del equipo 1200R del fabricante CheckPoint.

Como podemos comprobar posee un diseño rugerizado soportando un rango de temperatura entre -40 y 75 ºC con un índice de humedad sin condensación entre 20 y 90%. Al igual que otros, no posee un ventilador para su refrigeración, importante para aquellos espacios con gran cantidad de polvo en el ambiente. Pose un total de 6 puertos para comunicar equipos; 4 LAN, 1 WAN y 1 DMZ, pudiendo los dos últimos ser utilizados a través de módulos SFP como fibra óptica. También un puerto serie para comunicación por consola.

Tendremos la opción de alimentarlo bien por un bornero en la parte frontal o con una fuente tradicional a un enchufe a 220V por la zona posterior. Importante tener en cuenta que la que se suministra opera entre 0-40ºC lo cual supone una diferencia notable con respecto al del propio equipo.

En la zona posterior nos encontraremos con un slot para introducir una tarjeta SD-HC y ser utilizada como almacén de logs. El fabricante ofrece una de 32GB de capacidad con lo que, al menos, hasta esta cantidad estaremos cubiertos.

Cara a la instalación, tendremos la opción de colocar un soporte para carril DIN y montarlo en aquellos espacios que así lo requieran.

Sin embargo, conviene prestar atención si nuestra opción sea la de alimentarlo con la fuente de alimentación a 220 V ya que el espacio entre equipo y armario puede no ser el suficiente para el que ocupa el conector.

El equipo trae consigo la posibilidad de ser administrado tanto de forma centralizada a través de una consola de administración, o local vía web. En mi caso he elegido esta opción, para su puesta en marcha inicial. Para ello habrá que conectarse a l puerto LAN 1 e introducir la IP que viene por defecto, 192.168.1.1. Luego seguiremos el asistente para su configuración inicial.

 

 

Luego deberemos de llevar a cabo la actualización sistema y los servicios que trae consigo el propio equipo. Aquí al hacerlo a la versión de Firmware R77.20.75 como podemos apreciar la apariencia cambia.

Hasta aquí la presentación de este equipo que al igual que otros puede ser empleado para técnicas de Virtual Patching, protección de conjunto de equipos, o acceso remoto seguro. En futuras entradas veremos más del funcionamiento y cómo podremos proteger tanto nuestro entornos industriales como nuestras infraestructuras críticas.

Un abrazo!

Edorta

TAP Devices, Siemens TAP 104

Few months ago, I wrote about how port mirroring is an allied to capture and analyze network traffic. You can access to the article clicking here. There are a lot of reasons to use it, such as identify communications, troubleshooting tasks, use of IDS/IPS systems, and so on. But port mirroring is not the only one, we can use TAP devices. However, as I said several times, we must use specialized equipment for these environments, in particular industrial ones. Today I will talk about Siemens TAP 104.

Siemens TAP 104 is a hardware device that can be installed between two devices to gather a copy of data traffic on Ethernet based networks. Once the collected frames are stored, we can visualize them with a network analyzer tool to identify the information that we are looking for. The TAP device does not affect to the communication that pass through it.

It has four RJ-45 ports. Two to connect the segments that we want to monitor and two more to connect the systems to collect the frames. It operates in a fault-free mode even when the power is off.

One use case can be as the picture below shows. For example, we can be interested to identify issues between the HMI and the S7-1500 PLC. The traffic will be gathered by Grassmarlin tool that can be downloaded from here. I wrote about it more than a year and half. You can find the article clicking here.

Following the concept of the previous picture, this time, I have replicated this scenario in small testbed. In the picture below you can identify different devices, such as Fortinet Fortigate Rugged 90D, Fortinet Fortiswitch 112D-PoE, Siemens PLC S7-1200, Siemens HMI, Siemens TAP 104 and a laptop. As you can see, the TAP is just in the middle of the Fortigate switch and the PLC. Each communication from and to them, is replicated to the first RJ-45 port, where the laptop is connected and running Wireshark packet analyzer.

Once the traffic is gathered, we can open it with an analyzrer. Below we can see the information available from LLDP protocol as system description, IP management address, and so on.

But if we are looking for information, we can see the values of sending and receiving from and to the devices.  In the picture below you can see the field “Function: GetMultiVariables”

And then displaying the field “Response Set-ValueList”  we can see the values 84 and 16, the same that appears in the HMI.

Today, with Siemens TAP 104, we see other way to gather network traffic to identify possible issues in our industrial communications where it is mandatory not to introduce additional latencies that may affect them. In general, it is very common to do it using Port Mirroring configurations, but as we have seen, there are others. Either Port Mirroring or TAP devices, we can find them a helpful resource for different use cases such as troubleshooting, anomalies, security problems and much more. Always with specialized equipment.

That is all for now, see you next time!

Edorta