Identificando tráfico con cortafuegos, Parte I

Comentábamos en la entrada “Más que IPs y puertos para proteger entornos industriales” la necesidad de realizar un análisis del tráfico de red para identificar las comunicaciones existentes dentro de nuestro entorno OT. Con los activos y servicios localizados, podremos empezar a configurar las reglas necesarias en nuestros cortafuegos dentro de las acciones de “Separación y Segmentación” necesarias para limitar accesos o propagación de acciones que puedan afectar a la operatividad de nuestras instalaciones.

Sin embrago, debemos ir un paso más allá y conocer aquellos protocolos y comandos que permiten interactuar entre sistemas de control. Sin embargo, uno de los problemas más comunes es el alto grado de desconocimiento ya que, muy a menudo, nos enfrentamos a redes conmutadas o enrutadas donde todo comunica sin filtro alguno.

Esto cobra especial importancia, a nivel de célula de automatización, instalación o conjunto de equipos en planta; base de la actividad de las empresas. Sistemas superiores deben comunicar con controladores y éstos a su vez con elementos de periferia, como sensores, actuadores o cabeceras dentro de arquitecturas de periferia distribuida. Esto da lugar a en muchas ocasiones a que PLCs dispongan de dobles en laces de red. Por ejemplo, un módulo de comunicaciones para su integración “aguas arriba” con la red corporativa y otra “aguas abajo” de la propia CPU para entradas, salidas y módulos de conexión de dentro arquitecturas descentralizadas.

Como bien sabemos las latencias en este tipo de entornos son un aspecto crítico ya que las comunicaciones deben de hacer frente al carácter determinístico de éstas. Por tanto, debamos donde debamos identificar el tráfico no podemos introducir tiempos adicionales que puedan interferir en la operación.

Por tanto, surgen pues dos necesidades, documentar nuestras comunicaciones independientemente del segmento; y el despliegue de nuevos elementos de seguridad perimetral para separar y segmentar nuestras redes IT y OT.

Gracias a las funcionalidades de los productos de algunos fabricantes podremos apoyarnos en alguna de ellas para hacer esto último.

Por ejemplo, el fabricante Fortinet nos permite la configuración de alguna de las interfaces físicas en un modo denominado “One-arm-Sniffer”. Este modo, a diferencia de las habituales para permitir o denegar el flujo de comunicaciones, permitirá analizar mediante los motores IPS y Control de Aplicación el tráfico enviado desde un puerto espejo un dispositivo TAP. En caso de coincidencia con alguna de las firmas, se genera el correspondiente log y registro, descartándose el tráfico recibido.

De esta manera podremos utilizar nuestro equipo Fortinet Fortigate como un IDS o detectar qué tráfico a nivel de capa 7 que como hablamos en la entrada “Más que IPs y Puertos para proteger entornos industriales”. 

En primer lugar, deberemos configurar la interfaz en el modo anteriormente indicado, a partir de lo cual nos aparecerán las distintas opciones como los motores de filtrado contra los cuales queremos analizar el tráfico recibido. Como vemos en la imagen siguiente en nuestro caso hemos elegido la interfaz número 4.

Luego dentro de “Edit Sniffer Profile” podremos configurar cada uno de los motores y por tanto y ajustarlo en función de nuestras necesidades. En nuestro caso, puesto que planteamos el escenario de identificación de las comunicaciones y los protocolos industriales nos centraremos en éstos.

Para la presente entrada he empleado la herramienta TCPreplay para la reproducción de capturas PCAP.

De esta manera, el Firewall nos ha identificado no sólo un buen conjunto de ellos sino además los comandos que a través de ellos se envían. Como podemos ver en la imagen siguiente dentro de Modbus encontramos “Modbus_Function.Reserved.Code” y “Modbus_Read_Coils” entre otras como “S7.Protocol_CPU-Function.Read.SZL” o “DNP3_Response”.

Dependiendo de la arquitectura que tenga en nuestras instalaciones de planta las opciones podrán ser diversas, aparte de dónde radique el interés o necesidad por identificar ese tráfico. Es decir, podremos desplegar su uso a nivel de célula para conocer cómo un HMI, un PLC o periferia intercambian información; o bien, cómo desde servidores SCADA o MES envían o reciben consultas sobre equipos de planta para labores de control de producción, monitorización, telemetría entre otras.

En cualquiera de los casos, la idea es explotar otra funcionalidad de los cortafuegos que vayamos a desplegar y en la que nos podremos apoyar para la identificación de comunicaciones. Quizás no tengamos herramientas como “Nozomi SCADAGuardian” pero alternativas, las tenemos.

No obstante Fortinet no es el único. Próximamente presentaremos una funcionalidad similar, pero de otro fabricante.

¡Un saludo, nos vemos en la próxima!

Más que IPs y puertos para proteger entornos industriales

Los cortafuegos representan la primera línea de defensa para proteger los entornos industriales. Separar y segmentar las redes, tanto si nos referimos a los entornos IT-OT como exclusivamente a OT es considerada como la primera labor a realizar. Con ello conseguiremos controlar, entre otros aspectos, accesos, conexiones, aplicaciones, usuarios… reduciendo así el grado de exposición de nuestros dispositivos y la respectiva superficie de ataque.

Sin embargo, desplegar este tipo de soluciones lleva aparejado un conjunto de acciones como identificar el tráfico existente para luego configurar todas las reglas de filtrado. La realidad me demuestra que muchas organizaciones no tienen conocimiento de las comunicaciones que se producen dentro de sus redes y aún menos documentadas. Nos enfrentamos en muchos casos a redes conmutadas o enrutadas donde todo comunica de forma directa y en las que no se ha contemplado, no sólo la seguridad, sino también un diseño jerárquico, escalable y tolerante a fallos. Me refiero, a que no existe una clara definición de perímetros, lo cual da lugar a arquitecturas con propósitos distintos bajo un mismo dominio de broadcast, alcance directo a los entornos OT desde oficinas, un único plan de direccionamiento, y así un largo etcétera.

Por tanto, de igual modo que hemos de identificar nuestros activos que antes de llevar a cabo cualquier acción, aquí deberemos hacer lo mismo con las comunicaciones. Necesitaremos, al menos, información de las direcciones de IP tanto de origen como de destino y los puertos, en particular el de destino. No podremos avanzar hasta llevar a cabo esta labor y, por supuesto, generar la documentación asociada. Además, hemos de tener presente que muchas de esas comunicaciones no serán necesarias, por lo que no tendrán que ser configuradas. Finalmente, y habiendo cerrado este proceso o, en paralelo con otros, habrán de ser validadas por responsables de planta, IT o similares.

Sin embargo, este análisis no puede quedar ahí. En redes industriales aparte de saber quién se comunica con quién y en qué puerto, hemos de saber el protocolo utilizado y qué valor, comando o instrucción “va dentro” de ese tráfico. Es decir, importa no sólo el tipo de equipo que inicia la comunicación y la mantiene, sino además cómo y qué se “dicen” entre sí.

Entre otros muchos motivos, lo que puede provocar un incidente o una pérdida del servicio, va a ser la escritura de una variable, el borrado de un fichero, cambio de estado de la CPU, acceso con credenciales por defecto desde dispositivos, etc.

Esto nos lleva a otra conclusión… y es que para saber lo que envía y recibe, hemos de conocer el protocolo, cosa que no siempre sucede. Se sabe que un HMI se comunica con un PLC; se responde ante ciertas peticiones; una aplicación se comunica con componentes de campo, pero pocas veces se baja hasta ese nivel.

Hemos de tener en cuenta que la mayoría de los protocolos de comunicaciones no incorporan medidas de seguridad nativas con lo que, sumado a ciertas funcionalidades y vulnerabilidades de equipos podremos, de forma intencionada generar o reproducir tráfico que permita leer o escribir valores, alterando así el normal funcionamiento.

Sumado a lo anterior, no podemos olvidar que la naturaleza de estos entornos es muy particular. Adicionalmente, pueden darse con frecuencia otra serie de circunstancias que aumenten el riesgo que se produzca un incidente, bien de forma intencionada o no intencionada. Por ejemplo:

  1. La viabilidad de aplicar una actualización o parche para corregir una vulnerabilidad puede llegar a ser muy difícil o inviable, por razones de disponibilidad, número de equipos, ubicación, riesgos asociados, y sobre todo impacto sobre el sistema.
  2. Inexistencia de software antivirus o protección de endpoint para análisis de dispositivos USB.
  3. Conexionado a la red de equipos de Proveedores o terceras partes para labores de mantenimiento o soporte.
  4. Incorporación de nuevos dispositivos con funcionalidades embebidas en los que no se ha contemplado la seguridad.
  5. Definición de usuarios con permisos de administrador y de uso compartido por equipos técnicos.

Las circunstancias descritas con anterioridad, favorecen el éxito de que una negligencia, exceso de confianza, infección, uso incorrecto de credenciales, explotación de una vulnerabilidad, software no necesario para la operación de las instalaciones, etc; tenga éxito y afectar a su disponibilidad y por tanto a la actividad de negocio.

Así pues, en estos análisis previos no podemos quedarnos exclusivamente en identificar IPs de origen y destino y puertos. Hemos de ir más allá y realizar un análisis más pormenorizado. Es necesario, aplicar otros controles que nos permitan detectar aplicaciones; analizar patrones para la identificación de intrusiones; presencia de malware; tráfico Web para accesos a interfaces de gestión; etc. para conocer el estado actual y si ya hay, o no, alguna anomalía en el entorno donde estamos.

En este sentido una de las opciones/recurso son las herramientas de monitorización como la que hablaba en la entrada “Monitorización Redes Industriales, SCADAGuardian” pero, claro está, no siempre podremos hacerlo.

Por tanto, se nos plantea la cuestión sobre cómo podremos hacer dicho análisis en esa fase previa al despliegue de cortafuegos. Sin olvidarnos, claro está, las características tanto de los sistemas como de las comunicaciones industriales en particular en lo que a latencias y variación del “Jitter” se refiere. Muy especialmente aquellas a nivel de célula de automatización.

En próximas entradas veremos la manera en la que podremos utilizar los estos dispositivos ya adquiridos para llevar a cabo esta labor. Es decir, realizar ese análisis más pormenorizado al que hacíamos referencia y a partir de ahí conocer lo qué sucede en nuestras infraestructuras de comunicaciones.

Gracias a ello, podremos avanzar de una manera más eficiente, completa y contextualizada la protección de nuestras organizaciones, empresas o clientes.

¡Nos vemos en la próxima!

SIEMENS SCALANCE S615, firewall para protección de célula

La seguridad perimetral es, y seguirá siendo, el primero de los requisitos para proteger los entornos industriales. Si no somos capaces de establecer los límites y saber hasta dónde llegan los entornos IT y OT, poco podremos hacer a favor de su seguridad. Para ello la apuesta es el despliegue de NGFW y ejercer así un control hasta Capa 7 para Separar y Segmentar nuestras redes. Pero si lo que necesitamos, o queremos, es ir un paso más allá y bajar a nivel de célula, también podremos hacerlo empleando modelos más pequeños pero adaptados físicamente a situaciones ambientales más hostiles de temperatura, humedad, polvo o campos electromagnéticos. Tal es el caso de modelos como Fortinet Fortigate Rugged30D, 35D, 60D y 90D; CheckPoint 1200R o Palo Alto 220R

Sin embargo, puede haber escenarios en los que este grado de protección a bajo nivel no pueda o no tenga porqué alcanzarse.

Por un lado, hay que tener en cuenta un que las actualizaciones de las firmas Antivirus, Control de Aplicación, IDS/IPS, Filtrado Web hay que renovarlas asumiendo un coste mayor o menor dependiendo el número de equipos o el período de soporte contratado. Y por otro, que cada organización determinará el grado de riesgo asumible en función de su actividad. Por lo que podrá aceptar que no es aceptable tal inversión, dando por buena una protección hasta Capa 4 implementando en firewalls superiores los citados controles.

No nos podemos olvidar que cada proyecto lleva aparejado un consumo de recursos, tanto de tiempo, personal y dinero. Dicho de otra manera, ¿cuánto tiempo necesito? ¿Cuántos profesionales me hacen falta? Y … ¿Cuánto me va a costar? Y en este sentido, no solamente en el momento del despliegue sino en los años sucesivos.

Cada organización es única, con lo que arquitecturas, sistemas, procesos, riesgos, amenazas, vulnerabilidades entre otros factores deben ser tratados de forma individual.

Por tanto, por muy buenas y que sean las medidas, y las propuestas sean de máximos, puede haber muchos condicionantes que nos hagan reducir nuestras pretensiones y no ir a propuestas de máximos. Por tanto, deberemos buscar una vez más alternativas y aproximaciones distintas.

En este sentido los fabricantes de equipos industriales disponen de productos de networking para una u otra función. Tal es el caso del equipo SIEMENS Scalance S615

Se trata de un Router/Firewall de pequeño tamaño con el que podremos crear hasta un total de 128 reglas de filtrado en Capa 4 y con el que podremos apoyarnos para realizar un filtrado de las comunicaciones. Posee un diseño pequeño, para equipos individuales o un conjunto reducido de ellos, pudiéndose instalar como es lógico, sobre carril DIN para un montaje próximo al equipo final.

Permite ser alimentado por doble fuente de alimentación a 24VDC, mientras que sus 5 puertos RJ45 nos permiten conectar distintos equipos a nivel de célula un rango de operación de -40º a 70º C. La protección ambiental está situada en IP20.

Ya dentro de las funcionalidades de filtrado (de tipo “Stateful Inspection”) si bien no tendría mucho sentido hacerlo, podremos deshabilitar la funcionalidad de cortafuegos.

Luego dentro del mismo menú podremos definir Servicios IP, Protocolos a nivel de capa 3 e incluso establecer el tipo y código permitidos por ICMP.

La definición de servicios lo encontraremos en la pestaña “IP Service”, desde donde luego los encontraremos como veremos en las reglas a configurar.

Las reglas las configuraremos en la pestaña “IP Rules”. En cuanto a las acciones podremos elegir entre Permitir, denegar o denegar sin enviar ninguna notificación al emisor.

Adicionalmente a las IPs origen y destino, podremos definir las interfaces de entrada y salida para luego completarlas con los servicios.

Para cada una de ellas podremos indicar si queremos registrar algún tipo de log y su respectiva categorización en caso de “machee” con alguna de las reglas configuradas. En nosotros estará definir qué es más o menos importante.

Luego en otro de los menús podremos visualizarlos.

En este sentido conviene mencionar la posibilidad de enviarlos a un servidor Syslog para poderlos consolidad junto con los de otros equipos. Esto cobra especial importancia si contamos con un sistema de correlación SIEM con el que podremos detectar anomalías de forma conjunta y contextualizada.

Como podemos apreciar se trata de un cortafuegos con capacidades reducidas, y con limitaciones en comparación productos de fabricantes especializados. No obstante, puede ser un buen recurso como apoyo a otros con las funcionalidades y motores de análisis necesarios para garantizar unos niveles de protección acordes a las amenazas de hoy en día.

Tal es el caso de la protección PLCs, RTU´s como se puede apreciar en la imagen siguiente.

Hasta aquí la presentación de este equipo, que aunque sencillo, puede ayudarnos a mejorar los controles de acceso a equipos finales.

¡Nos vemos en la próxima!

Un saludo.